质数列表

可以证明,质数的数目是无限多的,而它们可以透过不同的质数公式产生出来。以下将列出头500个质数,并以英文字母的顺序将不同种类的质数中的第一批列出来。

首五百个质数

以下共有二十五行,二十列,每行二十个连续质数。

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809
811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941
947 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223
1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811
1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129
2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287
2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423
2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609 2617
2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741
2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903
2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079
3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257
3259 3271 3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413
3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571

......

OEIS数列A000040).

哥德巴赫猜想证明研究报告中声称可用来计出1018之下的所有质数,[1] 共24,739,954,287,740,860个,但并没有储存下来。 世上有著名的公式可计算出质数计数函数,即是比某一个已知值小的质数总数。 现在已成功用电脑计算出在1023之下估计有1,925,320,391,606,803,968,923个质数。

质数分类

以下将出不同种类和形式的质数中最初的一些例子。详细内容可参照各主条目。根据定义,我们假设之后的都是自然数(包括0)。

平衡质数

每一个质数都是它的前一个质数和后一质数相加后的平均值。

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (A006562)

贝尔质数

又名Bell质数,每一个质数都是集合划分之中的质数而数位有n个位值。

2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837.

下一个质数将有 6539 位数. (A051131)

卡罗尔质数

每一个质数皆符合  的数式表达。

7, 47, 223, 3967, 16127, 1046527, 16769023, 1073676287, 68718952447, 274876858367, 4398042316799, 1125899839733759, 18014398241046527, 1298074214633706835075030044377087 (A091516)

中心多边形质数

中心十边形质数

每一个质数皆符合  的数式。

11, 31, 61, 101, 151, 211, 281, 661, 911, 1051, 1201, 1361, 1531, 1901, 2311, 2531, 3001, 3251, 3511, 4651, 5281, 6301, 6661, 7411, 9461, 9901, 12251, 13781, 14851, 15401, 18301, 18911, 19531, 20161, 22111, 24151, 24851, 25561, 27011, 27751 (A090562)

中心七边形质数

每一个质数皆符合 (7n2 − 7n + 2) / 2.的数式。

43, 71, 197, 463, 547, 953, 1471, 1933, 2647, 2843, 3697, 4663, 5741, 8233, 9283, 10781, 11173, 12391, 14561, 18397, 20483, 29303, 29947, 34651, 37493, 41203, 46691, 50821, 54251, 56897, 57793, 65213, 68111, 72073, 76147, 84631, 89041, 93563 (primes in A069099)

中心六边形质数

每一个质数皆符合  的数式。

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (A002407)

中心五边形质数

每一个质数皆符合 (5n2 − 5n + 2) / 2.的数式。

31, 181, 331, 601, 1051, 1381, 3331, 4951, 5641, 5881, 9151, 11731, 12781, 14251, 17431, 17851, 19141, 21391, 31081, 33931, 41281, 43891, 51481, 52201, 61231, 63601, 67651, 70141, 70981, 84181, 92641, 100501, 104551, 107641, 116101, 126001 (primes in A145838)

中心正方形质数

每一个质数皆符合  的数式表达。

5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841, 23981, 24421, 26681 (A027862)

中心三角形质数

每一个质数皆符合 (3n2 + 3n + 2) / 2的数式表达。

19, 31, 109, 199, 409, 571, 631, 829, 1489, 1999, 2341, 2971, 3529, 4621, 4789, 7039, 7669, 8779, 9721, 10459, 10711, 13681, 14851, 16069, 16381, 17659, 20011, 20359, 23251, 25939, 27541, 29191, 29611, 31321, 34429, 36739, 40099, 40591, 42589 (A125602)

陈质数

假设p是一个质数,那么p+2是一个质数或两个质数的积(半质数)。

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 (A109611)

表兄弟素数 

这是以对的形式存在的质数,(p, p + 4)皆是质数。

(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281) (A023200, A046132)

立方质数

每一个质数皆符合  的数式,这类质数都是中心六边形数

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (A002407)

每一个质数皆符合  的数式。

13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249 (A002648)

卡伦质数

每一个质数皆符合 n · 2n + 1的数式。

3, 393050634124102232869567034555427371542904833,下一个质数将有 1423 数字 (A050920)

二面质数

这些质数在上下倒置或以七段显示器镜像后仍是质数。

2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081 (A134996)

梅森质数

每一个质数皆符合 2n − 1的数式,其中n为质数。

首12个梅森质数是:

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 (A000668)

截至2018年1月,世界上已知的梅森质数有50个,当中第13,14和第50个(以底的数位大小排列),分别有157,183和23,249,425个数位。

梅森质数指数

每一个质数指数n带入公式 2n − 1的数式的结果是质数。

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609 (A000043)

双梅森质数

每一个质数皆符合  的数式,其中p 为质数。

7, 127, 2147483647, 170141183460469231731687303715884105727 (A077586里的质数)

以上是截至2008年1月已知的双梅森数。(属于梅森数的子集)

艾森斯坦质数虚数部分除外)

艾森斯坦整数不可逆元 和实数 (每一个质数皆符合 3n − 1)的数式。

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401 (A003627)

反质数

当这些质数的数位相反时将会成为另一个质数(以十进制为准)。

13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991 (A006567)

欧几里得质数

每一个质数皆符合 pn# + 1 的数式。(属于素连乘素数子集)。

3, 7, 31, 211, 2311, 200560490131 (A018239[2])

偶质数

每一个质数皆符合 2n 的值。

在这种条件下,2是唯一一个答案。 因此 2 有时被称为最奇怪的质数("the oddest prime"),与数学的意思"odd"(奇数)成双关语[1]页面存档备份,存于互联网档案馆

阶乘质数

每一个质数皆符合 n! − 1 或 n! + 1的数式。

2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 (A088054)

费马质数

每一个质数皆符合  的数式。

3, 5, 17, 257, 65537 (A019434)

以上是截至2009年4月已知的费马质数。

费波拿契质数

每一个质数皆符合 斐波那契数列 F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2

2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (A005478)

傅利曼质数

傅利曼数中的所有质数

127, 347, 2503, 12101, 12107, 12109, 15629, 15641, 15661, 15667, 15679, 16381, 16447, 16759, 16879, 19739, 21943, 27653, 28547, 28559, 29527, 29531, 32771, 32783, 35933, 36457, 39313, 39343, 43691, 45361, 46619, 46633, 46643, 46649, 46663, 46691, 48751, 48757, 49277, 58921, 59051, 59053, 59263, 59273, 64513, 74353, 74897, 78163, 83357(A112419)

高斯质数

它们的质数元皆属于高斯整数并符合4n + 3.的数式。

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503 (A002145)

Genocchi 质数

17

17是唯一一个Genocchi质数;另外在负质数也纳入考量时,-3的另一个答案。[3]

好质数

当质数 pn对于pn2 > pi−1 × pi+1 符合条件 1 ≤ in−1, 而 pn 是第n个质数。

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307 (A028388)

快乐质数

在快乐数中的所有质数。

7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093 (A035497)

希格斯质数 (对于平方)

当一个数p之前的所有希格斯数相乘后再平方,然后被p− 1这个数所整除时便是下一个希格斯质数。

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349 (A007459)

高互补欧拉商质数

当质数是一个欧拉函数多过任何一个除1以外比它小的整数。 互补欧拉的定义是一个正整数n可以用一个正整数m和一个比它小的互质数所表示,数式是n-φ(n)。

根据定义,一个高互补欧拉商数不可能同时是一个非互补欧拉商数,数式是m - φ(m) = n, 而φ 代表在欧拉函数, 是无解的。

2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889 (A105440)

非正则素数

它们是单数质数p可被属于第 p个的分圆域中的类数 所整除。

37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613, 617, 619 (A000928)

Kynea数

每一个质数皆符合  的数式。

2, 7, 23, 79, 1087, 66047, 263167, 16785407, 1073807359, 17180131327, 68720001023, 4398050705407, 70368760954879, 18014398777917439, 18446744082299486207 (A091514)

莱兰质数

每一个质数皆符合  

17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193 (A094133)

全循环质数(又名长质数)

在一个已知的底之下 b,对于一个质数p  可以得出一个循环数。 对于底是10的质数p:

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593 (A001913)

卢卡斯质数

质数符合卢卡斯数序列L0 = 2, L1 = 1, Ln = Ln-1 + Ln-2

2[4], 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 (A005479)

幸运质数

幸运数是经由类似埃拉托斯特尼筛法〔一种用删去法检定质数的算法〕的算法后留下的整数集合。

3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997 (A031157)

马尔可夫质数

对于质数p ,存在整数 xy 使 成立。

2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229 (primes in A002559)

米尔斯质数数

每一个质数皆符合  的表达式, 而 θ 是米尔斯常数. 对于所有正整数n,这种表达形式都是质数。

2, 11, 1361, 2521008887, 16022236204009818131831320183 (A051254)

极小质数

当质数在数字顺序不变下,所有子序列都不是质数,该质数就是极小质数。

极小质数的总数是26个:

2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 (A071062)

莫斯坚质数

在一个圆上有n点,而在点与点之间,以不同的形式画出不相交的的质数。

2, 127, 15511, 953467954114363 (A092832)

纽曼-尚克斯-威廉士质数

当这些质数当且仅当能写成以下的形式: 便归这一类。

7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599 (A088165)

奇数质数

当这些质数能以2n - 1表达便是。

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 (A065091)

这质数其实相等于2以外的所有质数。

巴都万质数

所有质数皆在巴都万数列之中并符合 ,  的数式。

2, 3, 5, 7, 37, 151, 3329, 23833, 13091204281, 3093215881333057, 1363005552434666078217421284621279933627102780881053358473 (A100891)

回文质数

顾名思义,是属于左右对称的质数,因为回读时仍是一样(以十进制为准)。

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 (A002385)

佩尔质数

在佩尔数序列中符合P0 = 0, P1 = 1, Pn = 2Pn-1 + Pn-2

2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449 (A086383)

可交换质数 

将该质数中的数字任意排列皆可成为另一个质数的数字称为可交换质数(以十进制为准)。

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111 (A003459)

接下来的可交换质数多半是循环单位的,即是只有数字1。

佩兰质数

属于佩兰数列的质数,可用数式P(0) = 3, P(1) = 0, P(2) = 2, P(n) = P(n − 2) + P(n − 3)表达。

2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 (A074788)

皮尔庞特质数

每一个质数皆符合  ,而且对于整数u,v ≥ 0。

这个质数是以数学家James Pierpont来命名。

这亦都是 素数

2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457 (A005109)

皮莱质数

对于每一个质数p存在n > 0 而令到p可被n! + 1整除但n不被p − 1所整除。

23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499 (A063980)

原始数

这些质数对于部分或所有十进制和任何一个比它要细的数要拥有多个的质数排列方式。

2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079 (A119535)

质数阶乘质数

每一个质数皆符合' pn# − 1 或者 pn# + 1。

3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (union of A057705 and A018239[2])

普罗斯质数

每一个质数皆符合k · 2n + 1 而且 k是单数和 k < 2n

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 (A080076)

毕达哥拉斯质数

每一个质数皆符合 4n + 1的表达式。

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449 (A002144)

四连质数

即是连续四个相差2的质数:(p, p+2, p+6, p+8)。

(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) (A007530, A136720, A136721, A090258)

拉马努金质数

在所有整数的 Rn要是最细的,因而才能给予最少的质数 nx/2 至 x 对于所有 xRn (所有整数都需要是质数)。

这个假设由印度数学家斯里尼瓦瑟·拉马努金(Srinivasa Aaiyabgar Ramanujan 1887-1920)所证实并因而得名。

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491 (A104272)

正则质数

对于所有质数 p 不能被属于第 p个的分圆域中的类数 所整除。

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281 (A007703)

循环质数

所有只以1作为唯一数字的质数。

11, 1111111111111111111, 11111111111111111111111 (A004022)

接下的两项分别有317和1031个数位。

剩余组别的质数

对于固定的 ad,每一个质数皆符合 a · n + d的表达式。 亦可理解为质数相称 d 模算数 a.

当中有三个个案有其自身的名字,2n+1是奇数质数,4n+1是四连质数,4n+3是高斯质数

2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 (A065091)
4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 (A002144)
4n+3: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107 (A002145)
6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139 (A002476)
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 (A007528)
8n+1: 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353 (A007519)
8n+3: 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251 (A007520)
8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269 (A007521)
8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263 (A007522)
10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281 (A030430)
10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 (A030431)
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 (A030432)
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359 (A030433)
...

10n+d (d = 1, 3, 7, 9)d是质数的数位结尾。

可右截短质数

当一个数从右方逐一移除位数时,每一个余下来的数都是质数。

十进制的可右截短质数共有83个,以下是完整列表:

2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797, 5939, 7193, 7331, 7333, 7393, 23333, 23339, 23399, 23993, 29399, 31193, 31379, 37337, 37339, 37397, 59393, 59399, 71933, 73331, 73939, 233993, 239933, 293999, 373379, 373393, 593933, 593993, 719333, 739391, 739393, 739397, 739399, 2339933, 2399333, 2939999, 3733799, 5939333, 7393913, 7393931, 7393933, 23399339, 29399999, 37337999, 59393339, 73939133 (OEIS数列A024770

可左截短质数

当一个数从左方逐一移除位数时,每一个余下来的数都是质数。

十进制的可左截短质数共有4260个:

2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683, 743, 773, 797, 823, 853, 883, 937, 947, 953, 967, 983, 997, 1223, 1283, 1367 ... (OEIS数列A024785

最大的是24位数的357686312646216567629137。

安全质数

p是质数,同时(p-1) / 2都是质数便成立。

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907 (A005385)

自我质数 

当这些质数不能以其他十进制的质数相加所产生时便是自我质数。

3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873 (A006378)

六质数

顾名思义,即是(p, p + 6)都是质数。

(5,11), (7,13), (11,17), (13,19), (17,23), (23,29), (31,37), (37,43), (41,47), (47,53), (53,59), (61,67), (67,73), (73,79), (83,89), (97,103), (101,107), (103,109), (107,113), (131,137), (151,157), (157,163), (167,173), (173,179), (191,197), (193,199) (A023201, A046117)

Smarandache–Wellin质数

对于头n个质数,其数字本身都要由质数组成,(以十进制为准)。

2, 23, 2357(A069151)

第四个沙马云达基- 韦伦质数是以头128个质数所串连而成的,以719作结。

索菲热尔曼质数

这个质数的条件是p和 2p + 1皆是质数。

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 (A005384)

星形质数

每一个质数皆符合6n(n - 1) + 1的数式,形状是一个正六角星。

13, 37, 73, 181, 337, 433, 541, 661, 937, 1093, 2053, 2281, 2521, 3037, 3313, 5581, 5953, 6337, 6733, 7561, 7993, 8893, 10333, 10837, 11353, 12421, 12973, 13537, 15913, 18481 (A083577)

Stern质数

每一个质数都不能够是一个比它小的质数和某个非零平方数的两倍之和。

2, 3, 17, 137, 227, 977, 1187, 1493 (A042978)

以上是截至2008年1月的所有Stern 质数,而且多半是全部的Stern 质数。

这个质数的是由德国数学家Moritz Abraham Stern (June 29, 1807–January 30, 1894)所提出,因而得名。

超级质数

质数序列中的有质数指数的质数(第2,第3,第5个...质数)。

3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991 (A006450)

超奇异质数

魔群月光理论的一个分支(详情:顶点代数),一个超级单独质数拥有多种质数(Supersingular)。超级单独质数是指一个质因数怪兽群Baby怪兽群英语Baby Monster groupM,而M是最大的离散单群英语sporadic group

超级单独质数共有15个:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 (A002267)

塔别脱质数 (全名塔别脱·本·科拉质数)

每一个质数皆符合 3 · 2n - 1的表达式。

2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 (A007505)

三胞胎素数

即是(p, p+2, p+6) 或 (p, p+4, p+6)都是质数。

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353) (A007529, A098414, A098415)

孪生质数

即是(p, p + 2)都是质数,是以对的形式存在的质数。

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463) (A001359, A006512)

乌拉姆数列

数列的首两项U1和U2定义为1和2,对于n>2,Un为最小而又能刚好以一种方法表达成之前其中两个相异项的和中的质数便是乌拉姆质数。

2, 3, 11, 13, 47, 53, 97, 131, 197, 241, 409, 431, 607, 673, 739, 751, 983, 991, 1103, 1433, 1489, 1531, 1553, 1709, 1721, 2371, 2393, 2447, 2633, 2789, 2833, 2897 (A068820)

唯一质数

对于每一个质数p来说,它的周期函数1/p是唯一的。(即是没有一个质数可给予同样的结果)

3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 (A040017)

瓦格斯塔夫质数

每一个质数皆符合(2n + 1) / 3的数式。

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 (A000979)

n的值包括:

3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 (A000978)

温德伯恩-埃瑟灵顿质数

图论来说,Wedderburn-Etherington数是用作点算有多少弱的二叉树可以被绘制,亦即是说,每一幅图中除了根外的顶点数目(详情树 (数据结构))与不多过三个的顶点相连。然而在Wedderburn-Etherington数中的质数便是温德伯恩-埃瑟灵顿质数。

2, 3, 11, 23, 983, 2179, 24631, 3626149, 253450711, 596572387 (primes in A001190)

韦伊费列治质数

对于每一个质数 p 都可以被 p2 2p − 1 − 1所整除。

1093, 3511,(A001220)

以上是截至2008年1月的已知的韦伊费列治质数。

威尔逊质数

对于每一个质数 p都可以被p2 (p − 1)! + 1所整除。

5, 13, 563 (A007540)

以上是截至2008年1月的已知的威尔逊质数。

沃尔斯滕霍尔姆质数

每一个质数 p 皆符合以下的二项式系数  

16843, 2124679 (A088164)

以上是截至2008年1月已知的沃尔斯滕霍尔姆质数。

胡道尔质数

每一个质数皆符合n · 2n − 1的数式。

7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319 (A050918)

x²+1素数

2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177, ...(A002496页面存档备份,存于互联网档案馆))

参见

  • 已知最大的质数,数值是282589933 − 1。(由GIMPS项目于2018年12月7日发现)
  • 数表
  • 可能性质数英语Probable prime
  • 伪质数
  • Strobogrammatic质数英语Strobogrammatic prime
  • 强质数
  • 沃尔-孙-孙质数
  • 威费希利素数英语Wieferich pair

注释

  1. ^ Tomás Oliveira e Silva, Goldbach conjecture verification页面存档备份,存于互联网档案馆).
  2. ^ 2.0 2.1 A018239 includes 2 = empty product英语empty product of first 0 primes plus 1, but 2 is excluded in this list.
  3. ^ Weisstein, Eric W. (编). Genocchi Number. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  4. ^ It varies whether L0 = 2 is included in the Lucas numbers.

外部链接