初等代数
初等代数是一个初等且相对简单形式的代数,教导对象为还没有数学和算术方面较深知识的中小学生,大学学习的则称为高等代数。当在算术中只有数字与其运算(如:加、减、乘、除)出现时,在代数中也会使用字母符号诸如 、 或 、 等表示数字,习惯上用前者表示未知数与变量,用后者表示任意的已知数。
概述
初等代数中还会使用诸如 、 、 、 等映射符号来表示关于某个字母符号的代数式。
* 它使得算术等式(或不等式)可以被描述成命题或定理(如: 实数 和 , ),因此这是系统化学习实数性质的第一步。
- 它允许涉及未知的数字。在一个问题的内容里,变量或许代表某一还不确定,但可能可以经由方程的规划及操纵来解开的数值。
- 它允许探究数量之间的数学关系的可能(如“若你卖了 张票,你的收益将有 元”)。
这三个是初等代数的主要组成部分,以区隔其与目的为教导大学生更高深主题的抽象代数的不同。[原创研究?]
在初等代数里,表示式包含有数字、变量及运算。它们通常把较高次项(习惯上)写在表示左边(参考多项式),举几个例子来说:
- 。
在更进阶的代数里,表示式也会包含有初等函数。
一个等式表示其等号两边的表示式是相等的。某些等式对于其中变量的所有取值都成立(如 );这种等式称为恒等式。而其他只有变量在某些值时才正确(如 ),此一使等式成立的变量值则称为这等式的解。
定理
与代数运算相关的定理 [1]
- 例如:若 ,则 。
- 例如:若 ,则 。
与“等于”相关的定理
- (等于的自反性)。
- 若 ,则 (等于的对称性)。
- 若 且 ,则 (等于的传递律)。
- 若 ,则 。
其他定理
- 若 且 ,则 。
- 若 ,则对任一 c, (等于的可加性)。
- 若 且 ,则 = 。
- 若 ,则对任一 c, (等于的可乘性)。
- 若两个符号相等,则一个总是能替换另一个(替换原理)。
- 若 且 ,则 (不等式的传递律)。
- 若 ,则对任一 c, 。
- 若 且 ,则 。
- 若 且 ,则 。
例子
一元一次方程
最简单的方程为一元一次方程,它们是含有一个常数和一没有幂的变量。例如:
其中心解法为在等式的两边同时以相同数字做加、减、乘、除,以使变量单独留在等式的一侧。一旦变量独立了,等式的另一边即是此变量的值。例如,将上面式子两边同时减去4:
- ,
简化后即为
再同时除以2:
再简化后即为答案:
一般的情形
也可以依同样的方式得出答案来:
【这就是一元一次方程简单的说明】
一元二次方程
一元二次方程可以表现成 ,在这 不等于零(假如 等于零,则此方式为一次方程式,而非二次方程式)。二次方程式必须保持二次的形态,如 ,二次方程式可以通过因式分解求解(多项式展开的逆过程),或者一般地使用二次方程求根公式。因式分解的举例:
这相当于
0 和 -3 是它的解,因为把 置为 0 或 -3 便使上述等式成立。 所有二次方程式在复数体系中都有两个解,但是在实数系统中却不一定,例如:
没有实数解,因为没有实数的平方是 -1。 有时一个二次方程式会有2重根,例如:
在这个方程中,-1是2重根。
线性方程组
在线性方程组内,如两个变量的方程组内有两个方程式的话,通常可以找出可同时满足两个方程式的两个变量。
下面为线性方程组的一个例子,有两个求解的方法:
求解的第一种方法
将第2个等式的左右项各乘以2,
再将两式相加,
上式可化简为
因为已知 ,于是就可以由两式中的任意一个推断出 。所以这个问题的完整解为
注意:这并不是解这类特殊情况的唯一方法; 也可以在 之前求得。
求解的第二种方法
另一种求解的方法为替代。
的等值可以由两个方程式中的其中一种推出。我们使用第二个方程:
由方程的两边减去 :
再乘上 -1:
将此 值放入原方程组的第一个方程式:
在方程的两端加上 2:
此可简化成
- 。
将此值代回两个方程式中的一个,可求得和上一个方法所求得的相同解答。
注意:这并不是解这类特殊情况的唯一方法;在这个方法里也是一样的, 也可以在 之前求得。
另见
参考
- Charles Smith, A Treatise on Algebra(页面存档备份,存于互联网档案馆), in Cornell University Library Historical Math Monographs(页面存档备份,存于互联网档案馆).
- Beginning Algebra Tutorials and Reviews for basic algebra review and practice..
- Feferman, Anita Burdman and Solomon Feferman (1990) "Alfred Tarski- Life and Logic." Cambridge University Press. p.74-76. 编辑
- ^ Mirsky, Lawrence (1990) An Introduction to Linear Algebra Library of Congress. p.72-3. ISBN 0-486-66434-1.