非阿贝尔群 数学里的非阿贝尔群,也称非交换群,是一种群。它由自身的集合G和二元运算 * 构成,在符合群的定义之余,G至少存在两个元素a和b,满足条件 a ∗ b ≠ b ∗ a {\displaystyle a*b\neq b*a} 。 [1][2]非阿贝尔是为了与阿贝尔群区分开来,其中所有的元素都满足交换律。 群论 群 基本概念 子群 · 正规子群 · 商群 · 群同态 · 像 · (半)直积 · 直和单群 · 有限群 · 无限群 · 拓扑群 · 群概形 · 循环群 · 幂零群 · 可解群 · 圈积 离散群 有限单群分类 循环群 Zn 交错群 An 李型群散在群马蒂厄群 M11..12,M22..24康威群 Co1..3 扬科群 J1..4 费歇尔群 F22..24子怪兽群 B怪兽群 M其他有限群对称群, Sn二面体群, Dn无限群整数, Z模群, PSL(2,Z) 和 SL(2,Z) 连续群 李群一般线性群 GL(n)特殊线性群 SL(n)正交群 O(n)特殊正交群 SO(n)酉群 U(n)特殊酉群 SU(n)辛群 Sp(n)G2 F4 E6 E7 E8劳仑兹群庞加莱群 无限维群 共形群微分同胚群 环路群 量子群 O(∞) SU(∞) Sp(∞) 代数群 椭圆曲线线性代数群(英语:Linear algebraic group)阿贝尔簇(英语:Abelian variety) 查论编 非阿贝尔群在数学和物理中广泛存在。最小的非阿贝尔群是6阶二面体群。物理中的常见例子是三维中的旋转群(绕不同的轴的旋转交换顺序会造成不同的结果),这也称作四元群。 连续群和离散群都有可能是非阿贝尔的。 大多数有趣的李群都是非阿贝尔的,它们在规范场论中扮演着重要角色。 参见 结合代数 阿贝尔群引用 ^ Dummit, David S.; Foote, Richard M. Abstract Algebra 3rd. John Wiley & Sons. 2004. ISBN 0-471-43334-9. ^ Lang, Serge. Algebra. Graduate Texts in Mathematics. Springer. 2002. ISBN 0-387-95385-X.