十二面体

部分的十二面体
Pyritohedron.png
五角十二面体
Snub digonal antiprism.png
扭棱楔形体
Dodecahedron.jpg
正十二面体
Rhombicdodecahedron.jpg
菱形十二面体
Decagonal prism.png
正十角柱英语Decagonal prism
Elongated square dipyramid.png
双四角锥柱

在几何学中,十二面体是指由十二组成的多面体,而由十二个全等的正五边形组成的十二面体称为正十二面体

十二个面的多面体可以是正十二面体菱形十二面体正五角帐塔双四角锥柱扭棱锲形体、十一角锥、十角柱

在许多情况下,常用“十二面体”一词来代表正十二面体

常见的十二面体

在所有凸十二面体中,包含镜射像共有6,384,634种拓朴结构明显差异的凸十二面体[1][2]。拓朴结构有明显差异意味着两种多面体无法透过移动顶点位置、扭曲或伸缩来相互变换的多面体,例如正十二面体和十角柱无论如何变形都无法互相变换,因此拓朴结构不同,但正十二面体和截角五方偏方面体可以透过简单的变形来彼此互换,因此正十二面体和截角五方偏方面体在拓朴上并无明显差异。

十角柱

 
正十角柱

十角柱是一种底面为十边形的柱体,是十二面体的一种,由12个面、30条边和20个顶点组成。正十角柱代表每个面都是正多边形的十角柱,其每个顶点都是2个正方形和1个十边形的公共顶点,因此具有每个角等角的性质,可以归类为半正十二面体。而顶点都是2个正方形和1个十边形的公共顶点的这种顶角,在顶点图中以 表示。正十角柱在施莱夫利符号中可以利用{10}×{} 或 t{2, 10}来表示;在考克斯特—迪肯符号英语Coxeter-Dynkin diagram中可以利用     来表示;在威佐夫符号英语Wythoff symbol中可以利用2 10 | 2来表示;在康威多面体表示法中可以利用P10来表示。若一个正十角柱底边的边长为 、高为 ,则其体积 和表面积 [3]

 
 

十一角锥

 
十一角锥

十一角锥是一种底面为十一边形的锥体,是十二面体的一种,其具有12个面、22条边和12个顶点,其对偶多面体是自己本身[4]。正十一角锥是一种底面为正十一边形的十一角锥。若一个正十一角锥底边的边长为 、高为 ,则其体积 和表面积 [4]

 
 

双六角锥

 
双六角锥

双六角锥是一种以六边形为基底的双锥体,是十二面体的一种,其可以视为两个六角锥底面对底面叠合成的立体,由12个面、18条边和8个顶点组成[5],对偶多面体为六角柱[5]

侧锥七角柱

侧锥七角柱是指在七角柱的侧面上叠上锥体所构成的立体。侧锥七角柱,是十二面体的一种,共由12个面、25条边和15个顶点所组成。当侧锥七角柱的所有面都是正多边形时,其侧锥的侧面与七角柱侧面的角度将会超过180度(约为183.3度)为接近平角的优角

 

因为有超过180度的内角,因此这种多面体是凹多面体,故不属于詹森多面体。底面边数最高且属于詹森多面体多面体的侧锥柱体只到六角柱,即侧锥六角柱,其中,侧锥六角柱的侧锥与侧面的角度也十分接近平角的180度(约为174.7度):

 

六方偏方面体

 
六方偏方面体

几何学中,六方偏方面体(英语:Hexagonal Trapezohedron)是一个由12个全等的筝形组成的多面体,为六角反角柱的对偶。所有六方偏方面体都有12个、24条和14个顶点[6]

复三方偏三角面体

复三方偏三角面体(ditrigonal scalenohedron)[7]又称为六方偏三角面体(Hexagonal Scalenohedron),是指具有三角形二面体对称性的偏三角面体,可以视为底为扭歪六边形的双六角锥,由12个全等的不等边三角形组成[8]:245,共有12个面、18个边和8个顶点。在矿物学中,复三方偏三角面体是一种晶族[9],部分晶体的晶形可以呈复三方偏三角面体形状,例如炉甘石[10]:107方解石

詹森多面体

在十一面体中,有4个是詹森多面体,它们分别为:正五角帐塔扭棱锲形体双四角锥柱正二十面体欠二侧锥英语Metabidiminished icosahedron

名称 种类 图像 编号 顶点 面的种类 对称性 展开图
正五角帐塔 帐塔   J5 15 25 12 5个正三角形 
5个正方形 
1个正五边形 
1个正十边形 
C5v, [5], (*55)  
扭棱锲形体 变棱锥   J84 8 18 12 12个正三角形  D2d  
双四角锥柱 双锥柱   J15 10 20 12 8个正三角形 
4个正方形 
D4h, [4,2], (*422)  
正二十面体欠二侧锥 切割二十面体   J62 10 20 12 10个正三角形 
2个五边形 
C2v  

十二面体列表

名称 种类 图像 符号 顶点 χ 面的种类 对称性 展开图
正十二面体 正多面体   {5,3}
     
20 30[11] 12 2 12个正五边形  Ih, H3, [5,3], (*532)  
十角柱 棱柱体   t{2,10}
{10}x{}
     
     
     
     
20 30[12] 12 2 2个十边形 
10个矩形 
D10h, [8,2], (*10 2 2), order 40
十一角锥 棱锥体   ( )∨{11} 12 22 12 2 1个十一边形 
11个三角形 
C11v, [11], (*11 11)[13]
双六角锥 双锥体   { }+{6}
     
8 18 12 2 12个三角形  D6h, [6,2], (*226), order 24
五角反柱 反棱柱   s{2,5}
     
     
10 20 12 2 2个五边形 
10个三角形 
D5d, [2+,10], (2*5), order 20  
截对角五方偏方面体 截对角偏方面体   20 30 12 2 2个五边形底面
10个五边形侧面
D5d, [2+,10], (2*5), 20阶
常见的十二面体
Ih, 120阶
正- 小星形- 大- 大星形-
       
Th, 24阶 T, 12阶 Oh, 48阶 Td, 24阶
五角十二面体 五角三四面体 菱形- 筝形-
       
D4h, 16阶 D3h, 12阶
菱形六角化- 菱形四角化- 梯形菱形- 梯形筝形-
       

参见

  • 正十二面体烷(化学)

参考文献

  1. ^ Steven Dutch: How Many Polyhedra are There?页面存档备份,存于互联网档案馆
  2. ^ Counting polyhedra页面存档备份,存于互联网档案馆) numericana.com [2016-1-10]
  3. ^ Wolfram, Stephen. "decagon prism". from Wolfram Alpha: Computational Knowledge Engine, Wolfram Research (英语). 
  4. ^ 4.0 4.1 Wolfram, Stephen. "Hendecagon pyramid". from Wolfram Alpha: Computational Knowledge Engine, Wolfram Research (英语). 
  5. ^ 5.0 5.1 David I. McCooey. Simplest Canonical Polyhedron with D6h Symmetry: Hexagonal Dipyramid). 
  6. ^ Dipyramids & Trapezohedra: Hexagonal Trapezohedron. dmccooey.com. 
  7. ^ 複三方偏三角面體 ditrigonal scalenohedron. 乐词网, 国家教育研究院. 
  8. ^ 台湾商务印书馆. 编审委员会. 增修辭源, 第 1 卷. 增修辞源. 台湾商务印书馆. 1979 [2023-01-08]. ISBN 9789570513738. (原始内容存档于2023-01-08). 
  9. ^ 複三方偏三角面晶族 ditrigonal scalenohedral class. 乐词网, 国家教育研究院. 
  10. ^ 中國壯藥材:壯漢文化交流的結晶. 崧烨文化. 2019. ISBN 9789576819933. 
  11. ^ Sutton, Daud, Platonic & Archimedean Solids, Wooden Books, Bloomsbury Publishing USA: 55, 2002 [2016-08-14], ISBN 9780802713865, (原始内容存档于2016-08-01) 
  12. ^ The Decagonal Prism. eusebeia. [2016-08-21]. (原始内容存档于2016-04-13). 
  13. ^ Simplest Canonical Polyhedron with C11v Symmetry. dmccooey. [2016-08-21]. (原始内容存档于2016-08-07).