浸入

数学上,浸入微分流形之间的可微映射,其导数处处是单射。确切而言,f : MN是浸入,若在M中每一点p

克莱因瓶浸入到3-空间中。

都是单射。(TpX表示X在点p处的切空间。另一个等价说法是f是浸入,若f是常数,且等于M的维数:

以上只要求f的导数为单射,但映射f未必是单射。

一个与浸入相关的概念是嵌入。光滑嵌入是一个单射浸入f : MN而同时为拓扑嵌入,使得M与其在N中的像微分同胚。浸入正是局部嵌入,即对M中每一点x都有一个x邻域UM,使得f : UN是嵌入。相反地,局部嵌入都是浸入。

一个单射浸入子流形而不是嵌入。

M紧致的,则单射浸入是一个嵌入;若M不是紧致,则未必成立。这两者的关系就如同连续双射之于同胚

参考

  • Adachi, Masahisa, Embeddings and immersions, 1993 [2013-09-29], ISBN 978-0-8218-4612-4, (原始内容存档于2013-11-26), translation Kiki Hudson 
  • Arnold, V. I.; Varchenko, A. N.; Gusein-Zade, S. M., Singularities of Differentiable Maps: Volume 1, Birkhäuser, 1985, ISBN 0-8176-3187-9 
  • Bruce, J. W.; Giblin, P. J., Curves and Singularities, Cambridge University Press, 1984, ISBN 0-521-42999-4 
  • Carter, J. Scott; Saito, Masahico, Surfaces in 3-Space That Do Not Lift to Embeddings in 4-Space, 1995 [2013-09-29], (原始内容存档于2016-03-04)published in conference proceedings Knot theory, Banach center publications, 42 Warzawa (1998), 29–47. 
  • Carter, J. Scott; Saito, Masahico, Knotted Surfaces and Their Diagrams, Mathematical Surveys and Monographs 55: 258, 1998, ISBN 978-0-8218-0593-0 
  • Carter, J. Scott; Kamada, Seiichi; Saito, Masahico, Surfaces in 4-space, 2004 
  • Gromov, M., Partial differential relations, Springer, 1986, ISBN 3-540-12177-3 
  • Hirsch M. Immersions of manifolds. Trans. A.M.S. 93 1959 242—276.
  • Koschorke, Ulrich, Multiple points of Immersions and the Kahn-Priddy Theorem, Math Z., 1979, (169): 223–236 
  • Smale, S. A classification of immersions of the two-sphere. Trans. Amer. Math. Soc. 90 1958 281–290.
  • Smale, S. The classification of immersions of spheres in Euclidean spaces. Ann. of Math. (2) 69 1959 327—344.
  • Spring, D., The Golden Age of Immersion Theory in Topology: 1959-1973 (PDF), Bulletin of the American Mathematical Society, 2005, (42): 163–180 [2013-09-29], (原始内容存档 (PDF)于2008-07-25) 
  • Wall, C. T. C.: Surgery on compact manifolds. 2nd ed., Mathematical Surveys and Monographs 69, A.M.S.

外部链接