积测度数学中,给出可测空间和其上的测度,可以获得积可测空间和其上的积测度。概念上近似于集合的笛卡儿积和两个拓扑空间的积拓扑。 设 ( X 1 , Σ 1 ) {\displaystyle (X_{1},\Sigma _{1})} 和 ( X 2 , Σ 2 ) {\displaystyle (X_{2},\Sigma _{2})} 是两个测度空间,就是说 Σ 1 {\displaystyle \Sigma _{1}} 和 Σ 2 {\displaystyle \Sigma _{2}} 分别是在 X 1 {\displaystyle X_{1}} 和 X 2 {\displaystyle X_{2}} 上的σ代数,又设 μ 1 {\displaystyle \mu _{1}} 和 μ 2 {\displaystyle \mu _{2}} 是其上的测度。以 Σ 1 × Σ 2 {\displaystyle \Sigma _{1}\times \Sigma _{2}} 记形如 B 1 × B 2 {\displaystyle B_{1}\times B_{2}} 的子集产生的笛卡儿积 X 1 × X 2 {\displaystyle X_{1}\times X_{2}} 上的σ代数,其中 B 1 ∈ Σ 1 {\displaystyle B_{1}\in \Sigma _{1}} 及 B 2 ∈ Σ 2 {\displaystyle B_{2}\in \Sigma _{2}} 。 积测度 μ 1 × μ 2 {\displaystyle \mu _{1}\times \mu _{2}} 定义为在可测空间 ( X 1 × X 2 , Σ 1 × Σ 2 ) {\displaystyle (X_{1}\times X_{2},\Sigma _{1}\times \Sigma _{2})} 上唯一的测度,适合 ( μ 1 × μ 2 ) ( B 1 × B 2 ) = μ 1 ( B 1 ) μ 2 ( B 2 ) {\displaystyle (\mu _{1}\times \mu _{2})(B_{1}\times B_{2})=\mu _{1}(B_{1})\mu _{2}(B_{2})} 对所有 B 1 ∈ Σ 1 , B 2 ∈ Σ 2 {\displaystyle B_{1}\in \Sigma _{1},\ B_{2}\in \Sigma _{2}} 。事实上对所有可测集E, ( μ 1 × μ 2 ) ( E ) = ∫ X 2 μ 1 ( E y ) μ 2 ( d y ) = ∫ X 1 μ 2 ( E x ) μ 1 ( d x ) {\displaystyle (\mu _{1}\times \mu _{2})(E)=\int _{X_{2}}\mu _{1}(E_{y})\,\mu _{2}(dy)=\int _{X_{1}}\mu _{2}(E_{x})\,\mu _{1}(dx)} ,其中 E x = { y ∈ X 2 | ( x , y ) ∈ E } {\displaystyle E_{x}=\{y\in X_{2}|(x,y)\in E\}} , E y = { x ∈ X 1 | ( x , y ) ∈ E } {\displaystyle E_{y}=\{x\in X_{1}|(x,y)\in E\}} ,两个都是可测集。 这测度的存在性和唯一性是得自哈恩-柯尔莫哥洛夫定理. 欧几里得空间Rn上的博雷尔测度可得自n个实数轴R上的博雷尔测度的积。 参考文献 本条目含有来自PlanetMath《Product measure》的内容,版权遵守知识共享协议:署名-相同方式共享协议。