乘积法则

乘积法则(英语:Product rule),也称积定则莱布尼兹法则,是数学中关于两个函数的导数的一个计算法则。

若已知两个可导函数及其导数,则它们的积的导数为:

这个法则可衍生出积分分部积分法

莱布尼兹的发现

人们将这个法则的发现归功于莱布尼兹,以下是他的论述:设u(x)和v(x)为x的两个可导函数。那么,uv的微分是:

 

由于du·dv可忽略性法语Négligeabilité,因此有:

 

两边除以dx,便得:

 

若用拉格朗日符号来表达,则等式记为

 

例子

  • 假设我们要求出f(x) = x2 sin(x)的导数。利用乘积法则,可得f'(x) = 2x sin(x) + x2cos(x)(这是因为x2的导数是2x,sin(x)的导数是cos(x))。
  • 乘积法则的一个特例,是“常数因子法则”,也就是:如果c实数f(x)是可微函数,那么cf(x)也是可微的,其导数为(c × f)'(x) = c × f '(x)。
  • 乘积法则可以用来推出分部积分法除法定则

证明一:利用面积

假设

 

fgx点可导。那么:

 

现在,以下的差

 

是图中大矩形的面积减去小矩形的面积。

这个区域可以分割为两个矩形,它们面积的和为:

 

因此,(1)的表达式等于:

 

如果(5)式中的四个极限都存在,则(4)的表达式等于:

 

现在:

 

因为当wx时,f(x)不变;

 

因为gx点可导;

 

因为fx点可导;以及

 

因为gx点连续(可导的函数一定连续)。

现在可以得出结论,(5)的表达式等于:

 

证明二:使用对数

f = uv,并假设uv是正数。那么:

 

两边求导,得:

 

把等式的左边乘以f,右边乘以uv,即得:

 

证明三:使用导数的定义

 

fgx点可导。那么:

 

 
 
 
 .

推广

  • 若有 个函数 ,则:
 
  • 莱布尼兹法则)若 均为可导 次的函数,则  次导数为:
 

其中 二项式系数

应用

乘积法则的一个应用是证明以下公式:

 

其中n是一个正整数(该公式即使当n不是正整数时也是成立的,但证明需要用到其它方法)。我们用数学归纳法来证明这个公式。如果n = 1, 

假设公式对于某个特定的k成立,那么对于k + 1,我们有:

 

因此公式对于k + 1也成立。

参见