内斯比特不等式内斯比特不等式是数学的一条不等式,它说对任何正实数 a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} ,都有: a b + c + b a + c + c a + b ≥ 3 2 . {\displaystyle {\frac {a}{b+c}}+{\frac {b}{a+c}}+{\frac {c}{a+b}}\geq {\frac {3}{2}}.} 证明 此不等式证明方法很多,例如从平均数不等式我们有: ( a + b ) + ( a + c ) + ( b + c ) 3 ≥ 3 1 a + b + 1 a + c + 1 b + c {\displaystyle {\frac {(a+b)+(a+c)+(b+c)}{3}}\geq {\frac {3}{{\frac {1}{a+b}}+{\frac {1}{a+c}}+{\frac {1}{b+c}}}}} ,移项得出: [ ( a + b ) + ( a + c ) + ( b + c ) ] ( 1 a + b + 1 a + c + 1 b + c ) ≥ 9 {\displaystyle [(a+b)+(a+c)+(b+c)]\left({\frac {1}{a+b}}+{\frac {1}{a+c}}+{\frac {1}{b+c}}\right)\geq 9} ,整理左式: a + b + c b + c + a + b + c a + c + a + b + c a + b ≥ 9 2 {\displaystyle {\frac {a+b+c}{b+c}}+{\frac {a+b+c}{a+c}}+{\frac {a+b+c}{a+b}}\geq {9 \over 2}} , ( a b + c + 1 ) + ( b a + c + 1 ) + ( c a + b + 1 ) ≥ 9 2 {\displaystyle \left({\frac {a}{b+c}}+1\right)+\left({\frac {b}{a+c}}+1\right)+\left({\frac {c}{a+b}}+1\right)\geq {9 \over 2}} 。因而不等式得证。