截角超立方体

截角超立方体有24个:8个截角立方体,和16个正四面体

截角超立方体
Schlegel half-solid truncated tesseract.png
施莱格尔投影
(可以看见正四面体胞)
类型均匀多胞体
识别
名称截角超立方体
参考索引12 13 14
数学表示法
考克斯特符号
英语Coxeter-Dynkin diagram
node_1 4 node_1 3 node 3 node 
施莱夫利符号t0,1{4,3,3}
性质
24
8 3.8.8 Truncated hexahedron.png
16 3.3.3 Tetrahedron.png
88
64 {3}
24 {8}
128
顶点64
组成与布局
顶点图Truncated 8-cell verf.png
Isosceles triangular pyramid
对称性
考克斯特群BC4, [4,3,3], order 384
特性
convex

坐标

截角超立方体可以通过在每条棱距离顶点 处截断超立方体的每一个角来得到。每个截断的角会产生一个正四面体

一个棱长为2的截角超立方体的每个顶点的笛卡儿坐标系坐标为:

 

投影

正交投影
考克斯特平面 B4 B3 / D4 / A2 B2 / D3
Graph      
二面体群 [8] [6] [4]
考克斯特平面 F4 A3
Graph    
二面体群 [12/3] [4]
 
展开图
 
三维正交投影

参考文献

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, 互联网档案馆
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • 2. Convex uniform polychora based on the tesseract (8-cell) and hexadecachoron (16-cell) - Models 13, 16, 17, George Olshevsky.
  • Klitzing, Richard. 4D uniform polytopes (polychora). bendwavy.org.  o3o3o4o - tat, o3x3x4o - tah, x3x3o4o - thex


外部链接