霍赫洛夫-沯波咯慈卡娅方程
霍赫洛夫-沯波咯慈卡娅方程( Khokhlov--Zabolotskaya equation)是一个非线性偏微分方程[1][2]:
解析解
霍赫洛夫-沯波咯慈卡娅方程有行波解:
- p[2] := 1.32+1.4934776966447732662*(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^1.2
- p[3] := 1.32+1.4934776966447732662*(.2707963267948966192-1.4974545260150964159*x^1.2-1.*C[2]^1.2*y^1.2)^1.2
- p[7] := 1.32+1.4934776966447732662((55.009468881881296225-14.965237496723309046*I)*sqrt(1.-.
- 66321499013806706114*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2-(.38969456396968710805*I)*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*sqrt(1.-.66321499013806706114*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+(.38969456396968710805*I)*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*EllipticF((.84629952125971224961+.23023442302651244686*I)*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3), .86217948717948717949-.50660293316059324046*I)/sqrt(3000.*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^4-6725.*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+5070.))^1.2
- p[8] := 1.32+1.4934776966447732662*(-(34.214441730088728277*I)*sqrt(1.+2.1356058039711429821*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*sqrt(1.-2.2476058039711429821*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*EllipticF((1.4613712067681992557*I)*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3), 1.0258869993454412308*I)/sqrt(3000.*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^4+70.*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2-625.))^1.2
- p[9] := 1.32+1.4934776966447732662*((38.347855408516105018-11.263642905975212858*I)*sqrt(1.-1.3164251207729468599*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2-(.84634523908200302082*I)*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*sqrt(1.-1.3164251207729468599*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+(.84634523908200302082*I)*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*EllipticF((1.2003002147146243158+.35255564762321759608*I)*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3), .84115756322748992840-.54079011994043611908*I)/sqrt(5070.*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^4-5450.*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+2070.))^1.2
p[10] := 1.32+1.4934776966447732662*arctan(1/sqrt(1.2*csc(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^2-1.2))^1.2
- p[11] := 1.32+1.4934776966447732662*arctan(1/sqrt(1.2*sec(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^2-1.2))^1.2
- p[12] := 1.32+1.4934776966447732662*arctan(1/sqrt(1.2*sech(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^2-1.2))^1.2
参考文献
- ^ Kodama, Y. and Gibbons, J., A method for solving the dispersionless KP hierarchy and its exact solutions, II, Phys. Lett. A,Vol. 135, No. 3, pp. 167–170, 1989.
- ^ Anna Rozanova-Pierrat Mathematical analysis of Khokhlov-Zabolotskaya-Kuznetsov (KZK) Equation,2006
- *谷超豪 《孤立子理论中的达布变换及其几何应用》 上海科学技术出版社
- *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
- 李志斌编著 《非线性数学物理方程的行波解》 科学出版社
- 王东明著 《消去法及其应用》 科学出版社 2002
- *何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
- Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
- Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
- Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
- Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
- Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
- Dongming Wang, Elimination Practice,Imperial College Press 2004
- David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
- George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759